Shear impossibility: Comments on “Void growth by dislocation emission” and “Void growth in metals: Atomistic calculations”
نویسندگان
چکیده
Recently it was proposed that voids in crystals could grow by emission of shear dislocation loops [V.A. Lubarda, M.S. Scheider, D.H. Kalantar, B.A. Remington, M.A. Meyers, Acta Materialia 52 (2004) 1397–1408]. Even more recently, this proposal was ostensibly supported by molecular simulations of voids in strained single crystals [S. Traiviratana, E.M. Bringa, D.J. Benson, M.A. Meyers, Acta Materialia 56 (2008) 3874–3886]. The purpose of this comment is to dispute this recent assertion as unfounded. 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
منابع مشابه
Response to “Shear Impossibility—Comments on ‘Void Growth by Dislocation Emission’ and ‘Void Growth in Metals’”
We thank the authors of Ref. [1] for their comments and interest in our work [2–6]. We agree that the emission of shear loops on one single shear plane cannot lead to void growth. However, our simulations suggest that coordinated shear on non-parallel planes can lead to void growth/shrinkage [3–5]. Detailed descriptions of this process are still being worked out and represent an exciting area f...
متن کاملGrowth and Collapse of Nanovoids in Tantalum Monocrystals Loaded at High Strain Rate
Shock-induced spall in ductile metals is known to occur by the sequence of nucleation, growth and coalescence of voids, even in high purity monocrystals. However, the atomistic mechanisms involved are still not completely understood. The growth and collapse of nanoscale voids in tantalum are investigated under different stress states and strain rates by molecular dynamics (MD) simulations. Thre...
متن کاملVoid growth by dislocation emission
Laser shock experiments conducted at an energy density of 61 MJ/m revealed void initiation and growth at stress application times of approximately 10 ns. It is shown that void growth cannot be accomplished by vacancy diffusion under these conditions, even taking into account shock heating. An alternative, dislocation-emission-based mechanism, is proposed for void growth. The shear stresses are ...
متن کاملBlocking effect of twin boundaries on partial dislocation emission from void surfaces
Recent discovery that nanoscale twin boundaries can be introduced in ultrafine-grained metals to improve strength and ductility has renewed interest in the mechanical behavior and deformation mechanisms of these nanostructured materials. By controlling twin boundary spacing, the effect of twin boundaries on void growth is investigated by using atomistic simulation method. The strength is signif...
متن کاملVoid Growth in BCC Metals Simulated with Molecular Dynamics using the Finnis - Sinclair Potential
The process of fracture in ductile metals involves the nucleation, growth, and linking of voids. This process takes place both at the low rates involved in typical engineering applications and at the high rates associated with dynamic fracture processes such as spallation. Here we study the growth of a void in a single crystal at high rates using molecular dynamics (MD) based on Finnis-Sinclair...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010